基于Mindformers+mindspore框架在升腾910上进行qwen-7b-chat的lora微调
基于Mindformers+mindspore框架在昇腾910上进行qwen-7b-chat的8卡lora微调
主要参考文档:https://gitee.com/mindspore/mindformers/tree/r1.0/research/qwen
STEP 1: 环境准备
我使用mindformers官方提供的docker镜像进行微调,下载指令:
docker pull swr.cn-central-221.ovaijisuan.com/mindformers/mindformers1.0.2_mindspore2.2.13:20240416
启动容器指令参考:
#!/bin/bash
CONTAINER_NAME=mindformers-r1.0
CHECKPOINT_PATH=/var/images/llm_setup/model/qwen/Qwen-7B-Chat
DOCKER_CHECKPOINT_PATH=/data/qwen/models/Qwen-7B-Chat
IMAGE_NAME=swr.cn-central-221.ovaijisuan.com/mindformers/mindformers1.0.2_mindspore2.2.13:20240416
docker run -it -u root \
--device=/dev/davinci0 \
--device=/dev/davinci1 \
--device=/dev/davinci2 \
--device=/dev/davinci3 \
--device=/dev/davinci4 \
--device=/dev/davinci5 \
--device=/dev/davinci6 \
--device=/dev/davinci7 \
--device=/dev/davinci_manager \
--device=/dev/devmm_svm \
--device=/dev/hisi_hdc \
-v /etc/localtime:/etc/localtime \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
-v /var/log/npu/:/usr/slog \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v ${CHECKPOINT_PATH}:${DOCKER_CHECKPOINT_PATH} \
--name ${CONTAINER_NAME} \
${IMAGE_NAME} \
/bin/bash
环境验证
在命令行中输入如下指令进行验证,
python -c "import mindspore;mindspore.set_context(device_target='Ascend');mindspore.run_check()"
如果输出如下结果则环境没问题:
MindSpore version: 版本号
The result of multiplication calculation is correct, MindSpore has been installed on platform [CPU] successfully!
微调需要的代码下载
微调使用代码大部分来自于mindformers 官方提供,在镜像内执行代码下载及目录进入:
git clone -b r1.0 https://gitee.com/mindspore/mindformers.git
cd mindformers
RANK_TABLE_FILE 生成
开始微调前请先准备多卡微调所需的RANKFILE。用镜像执行需要退出镜像环境在镜像外进行生成:
# 如果容器外没有git clone mindformers代码库,可以通过wget下载需要的代码
wget https://gitee.com/mindspore/models/raw/master/utils/hccl_tools/hccl_tools.py
# 生成rank_table_file文件
python hccl_tools.py --device_num "[0,8)"
将生成的 hccl_8p_01234567_xx.xx.xx.xx.json
文件拷贝到容器内即可进行下面的微调。
STEP 2: 下载模型
由于使用mindformers框架,需要对权重进行转换。目前使用的这个镜像环境进行权重转换有环境上的冲突,无法安装相应的包,所以直接从官网下载转换后的权重、词表文件:
# 权重ckpt 大小29G
wget https://ascend-repo-modelzoo.obs.cn-east-2.myhuaweicloud.com/MindFormers/qwen/qwen_7b_base.ckpt
# 词表文件
wget https://ascend-repo-modelzoo.obs.cn-east-2.myhuaweicloud.com/MindFormers/qwen/qwen.tiktoken
STEP 3: 数据准备
微调qwen模型需要先将数据转换为以下json格式:
{
"id": "1",
"conversations": [
{
"from": "user",
"value": "Give three tips for staying healthy."
},
{
"from": "assistant",
"value": "1.Eat a balanced diet and make sure to include plenty of fruits and vegetables. \n2. Exercise regularly to keep your body active and strong. \n3. Get enough sleep and maintain a consistent sleep schedule."
}
]
},
然后再转换为适配mindformers的Mindrecord数据,可以使用如下脚本:
python research/qwen/qwen_preprocess.py \
--input_glob /path/alpaca-data-conversation.json \ # 源数据路径(已转换成以上格式)
--model_file /path/qwen.tiktoken \ # 词表路径
--seq_length 2048 \
--output_file /path/alpaca.mindrecord # 输出mindrecord格式数据路径
结果:
STEP 4: 开始微调
注意开始微调前需要执行STEP 1中的RANK_TABLE_FILE生成,确保容器内有 hccl_8p_01234567_xx.xx.xx.xx.json
文件;
启动脚本进行微调,修改yaml文件
启动以下指令进行微调
cd mindformers/research
bash run_singlenode.sh "python qwen/run_qwen.py \
--config qwen/run_qwen_7b_lora.yaml \
--load_checkpoint /data/qwen/models/Qwen-7B-Chat \
--use_parallel True \
--run_mode finetune \
--auto_trans_ckpt True \
--train_data /path/alpaca.mindrecord" \
/data/hccl_8p_01234567_10.17.2.76.json [0,8] 8
其中有如下注意要点:
qwen/run_qwen_7b_lora.yaml
中为需要配置的参数文件,需要修改如下内容确保无误:load_checkpoint: 'model_dir' # 使用完整权重,权重按照`model_dir/rank_0/xxx.ckpt`格式存放 model_config: seq_length: 2048 # 与数据集长度保持相同 train_dataset: &train_dataset data_loader: type: MindDataset dataset_dir: "/path/alpaca.mindrecord" # 配置训练数据集文件夹路径 shuffle: True pet_config: pet_type: lora lora_rank: 64 lora_alpha: 16 lora_dropout: 0.05 target_modules: '.*wq|.*wk|.*wv|.*wo|.*w1|.*w2|.*w3' freeze_exclude: ["*wte*", "*lm_head*"] # 使用chat权重进行微调时删除该配置
微调成功:
Q&A
- 报错 ValueError x.shape and y.shape need to broadcast,完整报错信息如下
...
[INFO] 2024-07-16 13:52:49,028 [mindformers/trainer/base_trainer.py:682] training_process: .........Build Running Wrapper From Config For Train..........
[INFO] 2024-07-16 13:52:49,028 [mindformers/trainer/base_trainer.py:500] create_model_wrapper: .........Build Model Wrapper for Train From Config..........
[INFO] 2024-07-16 13:52:49,040 [mindformers/trainer/base_trainer.py:689] training_process: .........Build Callbacks For Train..........
[INFO] 2024-07-16 13:52:49,042 [mindformers/core/callback/callback.py:530] __init__: Integrated_save is changed to False when using auto_parallel.
[INFO] 2024-07-16 13:52:49,043 [mindformers/trainer/base_trainer.py:724] training_process: .........Starting Init Train Model..........
[INFO] 2024-07-16 13:52:49,043 [mindformers/trainer/utils.py:321] transform_and_load_checkpoint: .........Building model.........
[ERROR] 2024-07-16 14:16:46,150 [mindformers/tools/cloud_adapter/cloud_monitor.py:43] wrapper: Traceback (most recent call last):
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/tools/cloud_adapter/cloud_monitor.py", line 34, in wrapper
result = run_func(*args, **kwargs)
File "/data/mindformers/research/qwen/run_qwen.py", line 137, in main
trainer.finetune(finetune_checkpoint=ckpt, auto_trans_ckpt=auto_trans_ckpt)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindspore/_checkparam.py", line 1313, in wrapper
return func(*args, **kwargs)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/trainer/trainer.py", line 485, in finetune
self.trainer.train(
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/trainer/causal_language_modeling/causal_language_modeling.py", line 97, in train
self.training_process(
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/trainer/base_trainer.py", line 739, in training_process
transform_and_load_checkpoint(config, model, network, dataset)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/trainer/utils.py", line 322, in transform_and_load_checkpoint
build_model(config, model, dataset, do_eval=do_eval, do_predict=do_predict)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/trainer/utils.py", line 446, in build_model
model.build(train_dataset=dataset, epoch=config.runner_config.epochs,
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindspore/train/model.py", line 1274, in build
self._init(train_dataset, valid_dataset, sink_size, epoch)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindspore/train/model.py", line 529, in _init
train_network.compile(*inputs)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindspore/nn/cell.py", line 997, in compile
_cell_graph_executor.compile(self, phase=self.phase,
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindspore/common/api.py", line 1547, in compile
result = self._graph_executor.compile(obj, args, kwargs, phase, self._use_vm_mode())
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindspore/ops/primitive.py", line 647, in __infer__
out[track] = fn(*(x[track] for x in args))
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindspore/ops/operations/math_ops.py", line 80, in infer_shape
return get_broadcast_shape(x_shape, y_shape, self.name)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindspore/ops/_utils/utils.py", line 70, in get_broadcast_shape
raise ValueError(f"For '{prim_name}', {arg_name1}.shape and {arg_name2}.shape need to "
ValueError: For 'Mul', x.shape and y.shape need to broadcast. The value of x.shape[-1] or y.shape[-1] must be 1 or -1 when they are not the same, but got x.shape = [8, 1, 1024] and y.shape = [1, 2048, 2048].
解决方法:确保微调所用的yaml的model_config.seq_length与STEP 3中数据转换成mindrecords的seq_length一致,像上面的报错就是源于一个设为1024,一个设为2048;
- dst_strategy_path = local_strategy_paths[0]报错IndexError: list index out of range
...
[INFO] 2024-07-16 10:52:20,510 [mindformers/trainer/base_trainer.py:682] training_process: .........Build Running Wrapper From Config For Train..........
[INFO] 2024-07-16 10:52:20,510 [mindformers/trainer/base_trainer.py:500] create_model_wrapper: .........Build Model Wrapper for Train From Config..........
[INFO] 2024-07-16 10:52:20,523 [mindformers/trainer/base_trainer.py:689] training_process: .........Build Callbacks For Train..........
[INFO] 2024-07-16 10:52:20,525 [mindformers/trainer/base_trainer.py:724] training_process: .........Starting Init Train Model..........
[INFO] 2024-07-16 10:52:20,527 [mindformers/trainer/utils.py:334] transform_and_load_checkpoint: /data/qwen_ft/output is_share_disk: False
[INFO] 2024-07-16 10:52:20,527 [mindformers/trainer/utils.py:335] transform_and_load_checkpoint: world_size: 8
[INFO] 2024-07-16 10:52:20,528 [mindformers/trainer/utils.py:516] get_src_and_dst_strategy: .........Collecting strategy.........
[ERROR] 2024-07-16 10:52:20,530 [mindformers/tools/cloud_adapter/cloud_monitor.py:43] wrapper: Traceback (most recent call last):
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/tools/cloud_adapter/cloud_monitor.py", line 34, in wrapper
result = run_func(*args, **kwargs)
File "/data/qwen_ft/qwen/run_qwen.py", line 137, in main
trainer.finetune(finetune_checkpoint=ckpt, auto_trans_ckpt=auto_trans_ckpt)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindspore/_checkparam.py", line 1313, in wrapper
return func(*args, **kwargs)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/trainer/trainer.py", line 485, in finetune
self.trainer.train(
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/trainer/causal_language_modeling/causal_language_modeling.py", line 97, in train
self.training_process(
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/trainer/base_trainer.py", line 739, in training_process
transform_and_load_checkpoint(config, model, network, dataset)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/trainer/utils.py", line 338, in transform_and_load_checkpoint
src_ckpt_strategy, dst_ckpt_strategy = get_src_and_dst_strategy(config)
File "/root/miniconda3/envs/mindspore2.2.13_py39/lib/python3.9/site-packages/mindformers/trainer/utils.py", line 522, in get_src_and_dst_strategy
dst_strategy_path = local_strategy_paths[0]
IndexError: list index out of range
这个问题产生的过程是,当我们使用完整权重(STEP 2下载的qwen_7b_base.ckpt),且微调的yaml文件配置了 auto_trans_ckpt=True
时,脚本会自动启动权重转换,将完整权重转换为分布在8张卡上训练的分布式权重,并生成8卡的策略文件。在这个过程中如果没有在目的地防止相应的权重文件,或者权重文件本身有损的情况下,程序没有按照期待的方式进行切分、生成策略文件,导致 local_strategy_paths
目录下没有相应格式的文件甚至是空的,就报了这个错误。可能的原因和解决方法如下:
- 检查权重是否按照
model_dir/rank_0/xxx.ckpt
格式存放,存放路径不正确可能导致无法进行策略文件生成; - 检查权重是否有损坏,建议重新按照STEP 2 下载。