12.SpringCloudAlibabaSentinel实现熔断和限流

1.Sentinel

1.1 官网

sentinel官网,类似Spring Cloud Circuit Breaker

1.2 是什么

面向分布式、多语言异构化服务架构的流量治理组件。

1.3 下载地址

https://github.com/alibaba/Sentinel/releases

1.4 能干吗

Sentinel以流量为切入点,从流量控制、流量路由、熔断降级、系统自适应过载保护、热点流量防护等多个维度保护服务的稳定性。

Sentinel的特征:

丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Apache Dubbo、gRPC、Quarkus 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。同时 Sentinel 提供 Java/Go/C++ 等多语言的原生实现。

完善的 SPI 扩展机制:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

Sentinel的主要特性:

2.服务雪崩、降级、熔断、限流、隔离、超时区别

2.1 服务雪崩

多个微服务之间调用的时候,假设微服务A调用微服务B和微服务C,微服务B和微服务C又调用其它的微服务,这就是所谓的“扇出”。如果扇出的链路上某个微服务的调用响应时间过长或者不可用,对微服务A的调用就会占用越来越多的系统资源,进而引起系统崩溃,所谓的“雪崩效应”。对于高流量的应用来说,单一的后端依赖可能会导致所有服务器上的所有资源都在几秒钟内饱和。比失败更糟糕的是,这些应用程序还可能导致服务之间的延迟增加,备份队列,线程和其他系统资源紧张,导致整个系统发生更多的级联故障。这些都表示需要对故障和延迟进行隔离和管理,以便单个依赖关系的失败,不能取消整个应用程序或系统。

所以,通常当你发现一个模块下的某个实例失败后,这时候这个模块依然还会接收流量,然后这个有问题的模块还调用了其他的模块,这样就会发生级联故障,或者叫雪崩。复杂分布式体系结构中的应用程序有数十个依赖关系,每个依赖关系在某些时候将不可避免地失败。

2.2 服务降级

服务降级,说白了就是一种服务托底方案,如果服务无法完成正常的调用流程,就使用默认的托底方案来返回数据。

例如,在商品详情页一般都会展示商品的介绍信息,一旦商品详情页系统出现故障无法调用时,会直接获取缓存中的商品介绍信息返回给前端页面。

2.3 服务熔断

在分布式与微服务系统中,如果下游服务因为访问压力过大导致响应很慢或者一直调用失败时,上游服务为了保证系统的整体可用性,会暂时断开与下游服务的调用连接。这种方式就是熔断。类比保险丝达到最大服务访问后,直接拒绝访问,拉闸限电,然后调用服务降级的方法并返回友好提示。

服务熔断一般情况下会有三种状态:闭合、开启和半熔断;

闭合状态(保险丝闭合通电OK):服务一切正常,没有故障时,上游服务调用下游服务时,不会有任何限制。

开启状态(保险丝断开通电Error):上游服务不再调用下游服务的接口,会直接返回上游服务中预定的方法。

半熔断状态:处于开启状态时,上游服务会根据一定的规则,尝试恢复对下游服务的调用。此时,上游服务会以有限的流量来调用下游服务,同时,会监控调用的成功率。如果成功率达到预期,则进入关闭状态。如果未达到预期,会重新进入开启状态。

2.4 服务限流

服务限流就是限制进入系统的流量,以防止进入系统的流量过大而压垮系统。其主要的作用就是保护服务节点或者集群后面的数据节点,防止瞬时流量过大使服务和数据崩溃(如前端缓存大量实效),造成不可用;还可用于平滑请求,类似秒杀高并发等操作,严禁一窝蜂的过来拥挤,大家排队,一秒钟N个,有序进行。

限流算法有两种,一种就是简单的请求总量计数,一种就是时间窗口限流(一般为1s),如令牌桶算法和漏牌桶算法就是时间窗口的限流算法。

2.5 服务隔离

有点类似于系统的垂直拆分,就按照一定的规则将系统划分成多个服务模块,并且每个服务模块之间是互相独立的,不会存在强依赖的关系。如果某个拆分后的服务发生故障后,能够将故障产生的影响限制在某个具体的服务内,不会向其他服务扩散,自然也就不会对整体服务产生致命的影响。

互联网行业常用的服务隔离方式有:线程池隔离和信号量隔离。

2.6 服务超时

整个系统采用分布式和微服务架构后,系统被拆分成一个个小服务,就会存在服务与服务之间互相调用的现象,从而形成一个个调用链。

形成调用链关系的两个服务中,主动调用其他服务接口的服务处于调用链的上游,提供接口供其他服务调用的服务处于调用链的下游。服务超时就是在上游服务调用下游服务时,设置一个最大响应时间,如果超过这个最大响应时间下游服务还未返回结果,则断开上游服务与下游服务之间的请求连接,释放资源。

3.安装Sentinel

3.1 Sentinel组件由2部分组成

Sentinel 分为两个部分:

  • 核心库(Java 客户端)不依赖任何框架/库,能够运行于所有 Java 运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。
  • 控制台(Dashboard)基于 Spring Boot 开发,打包后可以直接运行,不需要额外的 Tomcat 等应用容器。

3.2 安装步骤

3.2.1 下载

略,见上文1.3的,下载地址。

3.2.2 运行命令

前提:JDK环境OK。8080端口不能占用。

命令:

java -jar sentinel-dashboard-1.8.6.jar
3.2.3 访问Sentinel管理界面

http://localhost:8080

登录账号密码均为sentinel

4.微服务8401整合Sentinel入门案例

4.1 启动Nacos8848

启动命令

startup.cmd -m standalone

前台界面

http://localhost:8848/nacos

4.2 启动Sentinel8080

java -jar sentinel-dashboard-1.8.6.jar

建议,启动命令,固定为start.bat文件。

4.3 新建微服务8401

4.3.1 新建Module

cloudalibaba-sentinel-service8401

4.3.2 POM
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.atguigu.cloud</groupId>
 <artifactId>cloud</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <artifactId>cloudalibaba-sentinel-service8401</artifactId>
 <properties>
 <maven.compiler.source>17</maven.compiler.source>
 <maven.compiler.target>17</maven.compiler.target>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>
 <dependencies>
 <!--SpringCloud ailibaba sentinel-datasource-nacos -->
 <dependency>
 <groupId>com.alibaba.csp</groupId>
 <artifactId>sentinel-datasource-nacos</artifactId>
 </dependency>
 <!--SpringCloud alibaba sentinel -->
 <dependency>
 <groupId>com.alibaba.cloud</groupId>
 <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
 </dependency>
 <!--nacos-discovery-->
 <dependency>
 <groupId>com.alibaba.cloud</groupId>
 <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
 </dependency>
 <!-- 引入自己定义的api通用包 -->
 <dependency>
 <groupId>com.atguigu.cloud</groupId>
 <artifactId>cloud-api-commons</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 <!--SpringBoot通用依赖模块-->
 <